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Abstract

In this paper we consider a charged Wigner-Dunkl quantum system in the presence of a constant magnetic

field. It is shown that this system obeys gauge invariance if minimally coupled to a vector potential following

the Dunkl-Maxwell relations. A family of vector potentials, which generate the constant magnetic field, is

constructed explicitly. The gauge invariance of the Wigner-Dunkl quantum system is established with a

gauge transformation exhibiting a deformed unitarity. For vector potentials following the standard Maxwell

relations it is not possible to establish gauge invariance for the Wigner-Dunkl quantum system.
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1 Introduction

In 1950 Wigner [1] put forward a classic question: Can one derive the corresponding commutation relations for

physical quantities from the classic equations of motion? Wigner used the harmonic oscillator as an example to

study this problem within the matrix mechanics and concluded that the popular commutation relation [x, p] = iℏ
may not always be the most general one. After the publication of Wigner’s work Yang [2], with the advice and

support of Born, studied Wigner’s article within the wave mechanics and found that the commutation relation

always holds as long as the wave function conditions were properly used, including a more rigorous definition

of Hilbert space and a more rigorous series expansion. In his work, Yang introduced a reflection operator

R with the property Rf(x) = f(−x), and concluded that a more general momentum operator of the form

p = −iℏ(∂x− (c/2x)R) was admissible with c being an arbitrary constant. Then, in 1989 the Dunkl operator [3]

was proposed, which is a combination of differential and difference operators involving the reflection operator

R, and turned out to be closely related to the coordinate representation of Wigner’s original findings as shown

by Yang [2].

During the last decades the deformed Heisenberg algebra [4] has been reconsidered in the context of quantum

mechanics, the so-called Wigner-Dunkl quantum mechanics. The deformed Heisenberg algebra with reflection,

introduced inexplicitly by Wigner and explicitly by Yang, found very important developments. This algebra

was generalized in the form of trilinear commutation relations for the case of various degrees of freedom and

led to the appearance of the notion of parastatistics, see refs. [5, 6, 7]. Later, hidden nonlinear supersymmetry
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was revealed in purely parabosonic oscillator systems in ref. [8]. Parastatistics played an important role in the

discovery of “color” degrees of freedom in hadron physics and in the formulation of su(3) gauge theory of QCD

[9]. The harmonic oscillator in connection with the deformed Heisenberg algebra in presence of a reflection

operator was studied in refs. [10, 11, 12]. The Coulomb problem in two and three dimensions was discussed

in [13] and [14]. Supersymmetric aspects of Wigner-Dunkl quantum systems were studied, for example, in

[15, 16, 17, 18, 19].

Thermodynamic properties of Dunkl-bosonic systems in the context of Dunkl-statistical mechanics are dis-

cussed in [20, 21, 22, 23]. In ref. [20] the thermodynamics of boson systems related to Dunkl differential–difference

operators is presented. The ideal Bose gas and blackbody radiation in the framework of Dunkl formalism have

been studied in ref. [21], and ref. [22] deals with the condensation of ideal Bose gas in a gravitational field in

the framework of Dunkl-statistic. The thermal properties of relativistic-Dunkl oscillators are investigated in

ref. [23], and then the same authors have studied the three-dimensional Dunkl-Klein-Gordon equations under

Coulomb potential in [24].

Other recent applications of the deformed Heisenberg algebra are related to the construction of the bosonized

form of the Dirac equation in various dimensions [25]. Here, in addition, the case of the electromagnetic coupling

of a general form using the reflection operators was considered and generalization to the non-Abelian case was

discussed. In ref. [26] the deformed Heisenberg algebra with reflection was related to non-commutative quantum

mechanics. The deformed Heisenberg algebra with reflection in presence of the deformation parameter was used

for the construction of non-unitary anyons which interpolate between bosons and fermions in ref. [27]. In ref.

[28], the two-dimensional deformed Heisenberg algebra with reflection was used for the generation of the (2+1)D

massive anyons by compactification on a circle of the formal (3 + 1)D massless fields with fractional helicity.

A study on Dunkl graphene in a constant magnetic field can be found in ref. [29]. Dunkl-Maxwell equations

are discussed in [30], where in essence the partial differential operators are replaced by Dunkl derivatives.

Whereas ref. [30] includes a discussion on the Dunkl variant of gauge transformations it remains at a purely

classical level.

It is the objective of the current work to investigate the gauge invariance of a charged Wigner-Dunkl quantum

system minimally coupled to a constant magnetic field utilizing the Dunkl-Maxwell formulation of [30]. This

paper is organised as follows. In section 2 we will briefly review the Wigner-Dunkl quantum formalism and

minimally couple that to an external magnetic field utilising Dunkl-Maxwell relations. Then, in section 3, we

will limit ourselves to a constant magnetic field. Here a family of vector potentials is constructed of which

all members represent a constant magnetic field. The associated gauge function is found, transforming two

members of the family into each other. In section 4, we will establish the gauge invariance of the charged

Wigner-Dunkl quantum system for the constant magnetic field configuration. As the gauge transformation is

nonlocal a detailed discussion on the transformation of wave functions is required. This is done in section 5.

Section 6 then considers the same setup, however, within the standard non-deformed Maxwell approach for

vector potentials. It is shown that no gauge invariance for the Wigner-Dunkl quantum system can be achieved

within the usual Maxwell formalism. That is, the Dunkl-Maxwell relations [30] are vital for gauge invariance of

Wigner-Dunkl quantum mechanics. A summary of our findings is presented in section 7.

2 Wigner-Dunkl Hamiltonian with magnetic field

Wigner-Dunkl quantum mechanics in three dimensions is based on a deformed Heisenberg algebra containing

reflection operators

[Xi, Pj ] = iℏ(1 + 2νiRi)δij , νi > −1

2
, i, j = 1, 2, 3 . (1)

In the above Xi and Pi denote the components of position and momentum operator, respectively. The reflection

operators Rj are the parity operators acting on the plane perpendicular to the xj-axis. That is, they have the
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following properties when acting on functions f defined on R3.

R1f(x1, x2, x3) = f(−x1, x2, x3) ,
R2f(x1, x2, x3) = f(x1,−x2, x3) ,
R3f(x1, x2, x3) = f(x1, x2,−x3) .

(2)

The real deformation parameters νi are called Dunkl parameters and are bounded from below as indicated in

(1). In the coordinate representation the position operator Xi is, as usual, represented by the coordinate xi.

However, the components of the momentum operator Pj := −iℏDj are represented by Dunkl derivatives

Dj :=
∂

∂ xj
+ νj (1 +Rj)

1

xj
=

∂

∂ xj
+
νj
xj

(1−Rj) , j = 1, 2, 3 . (3)

In the following we will exclusively work in the coordinate representation and make use of the vector notation

x := (x1, x2, x3)
T and P := (P1, P2, P3)

T when appropriate.

The free Wigner-Dunkl Hamiltonian for a particle of mass m > 0 is given by

H :=
P 2

2m
(4)

and acts on the weighted Hilbert space H := L2(R3,dµ) with scalar product

(φ,ψ) :=

∫
R3

dµ(x)φ∗(x)ψ(x) , φ, ψ ∈ H . (5)

and weighted measure

dµ(x) :=

3∏
j=1

dxi|xi|2νi . (6)

Let us note that the components Pj of the momentum operator are Hermitian on H. See the appendix, where

we explicitly show that

(φ, P †
j ψ) := (Pjφ,ψ) = (φ, Pjψ) for all φ,ψ ∈ H . (7)

The objective of this paper is to investigate the gauge invariance of a charged Wigner-Dunkl particle with

charge e, e < 0 for the electron, in the presence of an external magnetic field. In doing so let us briefly recall

the Dunkl variant of Maxwell’s equations following ref. [30], where electric field E and magnetic field B are

derivable from a scalar potential ϕ and a vector potential A via the below relations with D := (D1, D2, D3)
T

E = −Dϕ− 1

c

∂A

∂t
, B = D ×A . (8)

That is, the standard Maxwell relations are modified such that the partial derivatives with respect to the

coordinates are replaced by the corresponding Dunkl derivatives. Focusing on a purely external magnetic field

we will from now on consider a vanishing scalar potential ϕ = 0 and a time-independent vector potential

∂A/∂t = 0. As in standard quantum mechanics we propose a minimal coupling scheme. Hence, the Wigner-

Dunkl Hamiltonian of a charge particle with charge e and mass m > 0 is given by

H :=
1

2m

(
P − e

c
A
)2

, (9)

where c denotes the speed of light.

3 Vector potential and gauge transformation

In this section we will construct the vector potential associated with a homogenous magnetic field, which for

convenience we assume to be aligned with the x3-axis,

B = B e3 , B ∈ R , e3 := (0, 0, 1)T . (10)
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Then from eq. (8) the components of the vector potential A = (A1, A2, A3)
T are to be obtained via:

B = D ×A =

∣∣∣∣∣∣∣
e1 e2 e3

D1 D2 D3

A1 A2 A3

∣∣∣∣∣∣∣ = B e3. (11)

For the construction of the associated vector potential let us first introduce the three quantities

Qj(xj) :=
xj

1 + 2νj
(1 + νj − νjRj) =

1

1 + 2νj
(1 + νj + νjRj)xj , (12)

which are nonlocal functions of the coordinate xj and obviously obey the relations DjQj = 1 for all j = 1, 2, 3.

With this in mind it is now straightforward to obtain a one-parameter family of vector potentials all resulting

in the same magnetic field (10).

A
(a)
1 = aBQ2(x2), A

(a)
2 = (1 + a)Q1(x1), A

(a)
3 = 0 , (13)

where a ∈ R is a free gauge-parameter. As the Q’s are nonlocal functions so are the components of A not sim-

ple functions but nonlocal functions as they depend on the R’s. For convenience, let us specify some special cases.

Case a = − 1
2 :

A
(−1/2)
1 = −B

2
Q2 , A

(−1/2)
2 =

B

2
Q1 , A

(−1/2)
3 = 0 (14)

Case a = −1:

A
(−1)
1 = −BQ2 , A

(−1)
2 = 0 , A

(−1)
3 = 0 (15)

Case a = 0:

A
(0)
1 = 0 , A

(0)
2 = BQ1 , A

(0)
3 = 0. (16)

One of the most important problems in physics is the Landau problem, which describes the properties of a

charged particle in a constant magnetic field. In view of the results of refs. [31, 32], which investigated the

Landau problem in commutative and non-commutative space, we can interpret eqs. (14-16) such that (14)

represents a generalization of the symmetric gauge for the Landau problem, while eqs. (15) and (16) are

analogs of the Landau gauge. In other words, in current manuscript presents the generalized Landau problem

for the case of “Wigner-Dunkl quantum mechanics”.

Apparently, two different gauge parameters, say a and b, result in the same constant magnetic field. There-

fore, a gauge transformation must exist which transforms between two different but equivalent vector potentials

as follows

A(a) → A(b) := A(a) +DΛ(b−a) (17)

where Λ(b−a) directly follows from the condition

A(b) −A(a) = DΛ(b−a) . (18)

Again with DjQj = 1 it is straightforward to show that this function is given by

Λ(b−a) := (b− a)BQ1Q2 . (19)
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4 Towards a gauge invariance of Wigner-Dunkl quantum mechanics

To begin with let us promote the above nonlocal functions (12) to nonlocal operators by considering the variable

xj in (12) as position operator acting on H, that is, Qj = Qj(Xj). They obviously obey the commutation

relations

[Di, Qj ] = δij for all i, j = 1, 2, 3, (20)

and hence, may be called Dunkl position operators. It must be noted that these operators are not self-adjoint

on H as obviously

Q†
j =

xj
1 + 2νj

(1 + νj + νjRj) =
1

1 + 2νj
(1 + νj − νjRj)xj . (21)

We also note that Qjxj = xjQ
†
j and hence

Qjx
2n
j = x2nj Qj , Qjx

2n+1
j = x2n+1

j Q†
j , for n ∈ Z . (22)

In the same way we will promote the gauge function Λ(d) as defined in (19) to a nonlocal operator and note

that

[D1,Λ
(d)] = dBQ2 , [D2,Λ

(d)] = dBQ1 , [D3,Λ
(d)] = 0 , (23)

which implies [D1, [D1,Λ
(d)]] = 0 and [D2, [D2,Λ

(d)]] = 0. Hence we may apply Hadamard’s lemma leading us

to the relations

exp

{
ie

ℏc
Λ(d)

}
D1 exp

{
− ie

ℏc
Λ(d)

}
= D1 −

ie

ℏc
[D1,Λ

(d)] = D1 −
ie

ℏc
dBQ2 , (24)

exp

{
ie

ℏc
Λ(d)

}
D2 exp

{
− ie

ℏc
Λ(d)

}
= D2 −

ie

ℏc
[D2,Λ

(d)] = D2 −
ie

ℏc
dBQ1 . (25)

This then results in

exp

{
ie

ℏc
Λ(b−a)

}(
ℏ
i
D − e

c
A(a)

)
exp

{
− ie

ℏc
Λ(b−a)

}
=

(
ℏ
i
D − e

c
A(b)

)
. (26)

We are now in a position to establish the gauge invariance for Wigner-Dunkl quantum mechanics for a

constant magnetic field. Let

H(a) :=
1

2m

(
P − e

c
A(a)

)2

and H(b) :=
1

2m

(
P − e

c
A(b)

)2

, (27)

then these two Hamiltonians are related to each other by the gauge transformation

G := exp

{
ie

ℏc
Λ(b−a)

}
(28)

as follows

GH(a)G−1 = H(b) . (29)

The corresponding states transform accordingly as

ψ(b) = Gψ(a) . (30)

Here we note that Q†
j ̸= Qj and hence, also the generator (19) of gauge transformations is not self-adjoint. This

implies that these gauge transformations are not unitary. We will investigate the transformation (30) of wave

functions in more detail in the next section.
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5 On the gauge transformation of wave functions

In this section, for convenience, we ignore the x3 dependency, which is no limitation as the third component of

the vector potential vanishes for all gauge parameters a in (13). Hence, we consider an arbitrary element ψ ∈ H
and define its even and odd parts with respect to x1 and x2 by

ψr1r2(x1, x2) :=
1

4
[ψ(x1, x2) + r1ψ(−x1, x2) + r2ψ(x1,−x2) + r1r2ψ(−x1,−x2)] . (31)

These parts are pairwise orthogonal to each other and are eigenfunction of reflection operators R1 and R2.

Riψr1r2(x1, x2) = riψr1r2(x1, x2) , ri = ±1 , i = 1, 2 . (32)

The complete set of states ψr1r2 for a fixed tuple (r1, r2) span the subspace Hr1r2 ∈ H with well-defined parity

corresponding to the eigenvalues r1 and r2 of the reflection operators R1 and R2, respectively. In other words,

we have the orthogonal decomposition H = H++ ⊕ H+− ⊕ H−+ ⊕ H−− of the Hilbert space into the four

eigen-subspaces of R1 and R2. The original wave function is recovered via

ψ(x1, x2) = ψ++(x1, x2) + ψ+−(x1, x2) + ψ−+(x1, x2) + ψ−−(x1, x2) . (33)

Here and below we will use a simplified notation for subindexes ri = ±. To investigate the action of the gauge

operator we first consider the action of the components Qj on the four components of the wave function:

Q1ψ+± =
x1

1 + 2ν1
ψ+± , Q1ψ−± = x1ψ−± , (34)

Q2ψ±+ =
x2

1 + 2ν2
ψ±+ , Q2ψ±− = x2ψ±− . (35)

The action of the adjoint operators on these components read for all eight cases

Q†
1ψ+± = x1ψ+± , Q†

1ψ−± =
x1

1 + 2ν1
ψ−± , (36)

Q†
2ψ±+ = x2ψ±+ , Q†

2ψ±− =
x2

1 + 2ν2
ψ±− . (37)

Combinations of these relations lead us to

Q1Q2ψ = x1x2

[
ψ++

(1 + 2ν1)(1 + 2ν2)
+

ψ+−

(1 + 2ν1)
+

ψ−+

(1 + 2ν2)
+ ψ−−

]
, (38)

Q†
1Q

†
2ψ = x1x2

[
ψ++ +

ψ+−

(1 + 2ν2)
+

ψ−+

(1 + 2ν1)
+

ψ−−

(1 + 2ν1)(1 + 2ν2)

]
, (39)

and we observe, using Q1Q2x1x2 = x1x2Q
†
1Q

†
2, that

(Q1Q2)
2
ψ = q21q

2
2ψ with qj :=

xj
1 + 2νj

(40)

This finally leads us to the general gauge transformation of wave functions

exp {−iαQ1Q2}ψ = cos(αq1q2)ψ − i sin(αq1q2)
1

q1q2
Q1Q2ψ . (41)

where α = (b− a)eB/(ℏc). For the components of the wave function within the subspace Hr1r2 this reads

Gψr1r2 =
[
cos(αq1q2)− i sin(αq1q2)(1 + 2ν1)

1−r1
2 (1 + 2ν2)

1−r2
2

]
ψr1r2 . (42)

Or more explicitly we have

Gψ++ = exp {−iαq1q2}ψ++ ,

Gψ+− = [cos(αq1q2)− i(1 + 2ν2) sin(αq1q2)]ψ+− ,

Gψ−+ = [cos(αq1q2)− i(1 + 2ν1) sin(αq1q2)]ψ−+ ,

Gψ−− = [cos(αq1q2)− i(1 + 2ν1)(1 + 2ν2) sin(αq1q2)]ψ−− .

(43)
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Obviously, the norm is only preserved for the symmetric component ψ++. In general, G will only be unitarity

in the limit where both, ν1 and ν2, vanish. In that sense we may view G as an operator with deformed unitary

as
|Gψ++|2 = |ψ++|2 ,

|Gψ+−|2 =
(
cos2(αq1q2) + sin2(αq1q2)(1 + 2ν2)

2
)
|ψ+−|2 ,

|Gψ−+|2 =
(
cos2(αq1q2) + sin2(αq1q2)(1 + 2ν1)

2
)
|ψ−+|2 ,

|Gψ−−|2 =
(
cos2(αq1q2) + sin2(αq1q2)(1 + 2ν1)

2(1 + 2ν2)
2
)
|ψ−−|2 .

(44)

To conclude this section let us note that we have achieved gauge invariance of the Wigner-Dunkl quantum

mechanics at the expense that unitarity is replaced by a deformed unitarity in above sense. Naturally the

question arises, what happens in the case we minimally couple a standard vector potential to the Wigner-Dunkl

Hamiltonian (4). This will be the subject of the next section.

6 On the gauge transformation for standard vector potentials

As mentioned above, this section is dedicated to the investigation of a minimal coupling of standard vector

potentials to the free Wigner-Dunkl Hamiltonian (4). That is we will now consider the usual relation

B = ∇× Ã . (45)

Here ∇ denotes the standard gradient operator and we will use the tilde symbol for standard quantities like

vector potentials and gauge functions. Again we will consider the case of a homogenous magnetic field for

simplicity and comparison with above findings. Obviously the general form of the vector potential generating

such a magnetic field via (45) is given by

Ã
(a)
1 = aBx2, Ã

(a)
2 = (1 + a)x1, Ã

(a)
3 = 0 , (46)

and the gauge transformation reads

Ã(a) → Ã(b) := Ã(a) +∇ Λ̃(b−a) with Λ̃(b−a) := (b− a)Bx1x2 . (47)

Let us now minimally couple this vector potential to the free Wigner-Dunkl Hamiltonian. In doing so we

consider the unitary operator

G̃ := exp

{
ie

ℏc
Λ̃(b−a)

}
= exp

{
ieB

ℏc
(b− a)x1x2

}
(48)

and observe that

G̃Rj = Rj G̃† for j = 1, 2 , (49)

due to the fact Λ̃(b−a) is an odd function in x1 and x2. This implies that we cannot establish a gauge invariance

for the Wigner-Dunkl Hamiltonian minimally coupled to a standard vector potential as

G̃
(
Dj −

ie

ℏc
Ã

(a)
j

)
G̃−1 =

(
Dj −

ie

ℏc
Ã

(b)
j

)
+
νj
xj

(
Rj − GRjG†) . (50)

7 Summary

For Wigner-Dunkl quantum mechanics being a physically self-contained deformed quantum system it is essential

that it exhibits certain basic features. One of these basic properties is gauge invariance. By generalizing the

Landau problem for the case of “Wigner-Dunkl quantum mechanics”, we have shown that this can be achieved

to a certain extend when using the Dunkl-Maxwell formalism. That is, the spectra of the two gauge-equivalent
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Hamiltonians in (29) are identical. This comes at the expense that the gauge-transformation is not unitary and

hence the probability densities are not invariant under such transformation but transform according to (44).

On the other hand, we could show that, when coupled to a standard vector potential Ã, it does not lead to

any meaningful quantum system as different gauges would in general result in different spectra as indicated by

(50). The current discussion is limited to the case of a constant magnetic field and, therefore, can only be a first

step towards a gauge invariant Wigner-Dunkl quantum formalism. Further investigations in that direction are

currently in progress. For example, the usual Landau problem is characterized by four integrals of motion that

generate the centrally extended e(2)⊕u(1) algebra. Naturally one might ask the question, what happens to this

symmetry within the Wigner-Dunkl formalism. See for a similar discussion ref. [33], where the noncommutative

Landau problem was investigated in an extended supersymmetric context. It is well-known, see for example [34],

that the Pauli equation for a charged spin- 12 particle exhibits a supersymmetry for gyromagnetic ratio 2. This is

also expected to emerge in the limit of vanishing deformation parameters νi = 0 but a more detailed investigation

is required. Similarly, the usual Landau problem is an exactly solvable system with the Hamiltonian operator

being in essence equivalent to the Hamiltonian of the one-dimensional oscillator. Hence, in the limit of vanishing

deformation parameters in the Wigner-Dunkl formalism, the energy eigenvalues of the usual oscillator with its

infinite degeneracy, i.e. the so-called Landau levels, shall emerge. This, however, also requires a more detailed

discussion.

Let us also briefly comment on the Dunkl-position operators introduced in section 4. In contrast to the

Dunkl momentum operators Pj being Hermitian, the Qj ’s are not and, hence, may not be of much use beyond

the current context. This deficit can be cured when looking at symmetrized quantities like

1

2

(
Qj +Q†

j

)
= xj

1 + νj
1 + 2νj

or
1

2

{
Qj , Q

†
j

}
= x2j

1 + 2νj + 2ν2j
(1 + 2νj)2

, (51)

which are obviously self-adjoined and local operators.
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Appendix: Hermitianness of Pj

The Hermitianness of the components Pj requires that (φ, Pjψ) = (Pjφ,ψ) for all φ,ψ ∈ H. Hence it is sufficient

to show that the Dunkl operators Dj obey (φ,Djψ) = −(Djφ,ψ). First, by looking only on a single component

xj = x, we note that

(φ,Djψ) =

∫
R
dx |x|2ν

(
φ∗(x)ψ′(x) +

ν

x
φ∗(x)ψ(x)− ν

x
φ∗(x)ψ(−x)

)
. (52)

Let us now consider

(Djφ,ψ) =

∫
R
dx |x|2ν

(
φ′∗(x)ψ(x) +

ν

x
φ∗(x)ψ(x)− ν

x
φ∗(−x)ψ(x)

)
. (53)

Integration by parts with ∂x(|x|2νψ(x)) = |x|2ν
(
ψ′(x)) + 2ν

x ψ(x)
)
results in

(φ,Djψ) =

∫
R
dx |x|2ν

(
−φ∗(x)ψ′(x)− ν

x
φ∗(x)ψ(x)− ν

x
φ∗(−x)ψ(x)

)
= −(φ,Djψ) ,

(54)

which completes the proof for all components Pj being Hermitian.

8



References

[1] E.P. Wigner, Do the Equations of Motion Determine the Quantum Mechanical Commutation Relations?,

Phys. Rev. 77 (1950) 711-712.

[2] L.M. Yang, A Note on the Quantum Rule of the Harmonic Oscillator, Phys. Rev. 84 (1951) 788-790.

[3] C.F. Dunkl, Differential-Difference Operators associated to Reflection Groups, Trans. Am. Math. Soc. 311

(1989) 167-183.

[4] M.S. Plyushchay, Deformed Heisenberg algebra with reflection, Nucl. Phys. 491 (1997) 619-634.

[5] H.S. Green, A generalized method of field quantization, Physical Review, 90(2), 270 (1953).

[6] D.V. Volkov, On the quantization of half-integer spin fields, Sov. Phys. JETP 9 (1959): 1107-1111.

[7] D.V. Volkov, S-matrix in the generalized quantization method, Sov. Phys.-JETP 11 (1960): 375-378.

[8] M. Plyushchay, Hidden nonlinear supersymmetries in pure parabosonic systems, International Journal of

Modern Physics A 15, no. 23 (2000): 3679-3698.

[9] O.W. Greenberg, Spin and unitary-spin independence in a paraquark model of baryons and mesons, Phys-

ical Review Letters 13.20 (1964): 598.

[10] V. Jakubskỳ. L.M. Nieto, and M.S. Plyushchay, The origin of the hidden supersymmetry, Physics Letters

B 692.1 (2010): 51-56.

[11] V.X. Genest, M.E.H. Ismail, L. Vinet and A. Zhedanov, The Dunkl oscillator in the plane: I. Superinte-

grability, separated wavefunctions and overlap coefficients, J. Phys. A 46 (2013) 145201

[12] V.X. Genest, M.E.H. Ismail, L. Vinet and A. Zhedanov, The Dunkl oscillator in the plane: II. Represen-

tations of the symmetry algebra, Commun. Math. Phys. 329 (2014) 999-1029.

[13] V.X. Genest, L. Vinet and A. Zhedanov, The Dunkl oscillator in three dimensions J. Phys. Conf. Ser. 512

(2015) 012010.

[14] S. Ghazouani, I. Sboui, M.A. Amdouni and M. Ben El Hadj Rhouma, The Dunkl–Coulomb problem in

three-dimensions: energy spectrum, wave functions and h-spherical harmonics, J. Phys. A 52 (2019) 225202

(37pp).

[15] M.S. Plyushchay, Supersymmetry without Fermions, arXiv:hep-th/9404081 (1994) 10pp.

[16] M.S. Plyushchay, Deformed Heisenberg Algebra, Fractional Spin Fields, and Supersymmetry without

Fermions, Ann. Phys. 245 (1996) 339-360.

[17] S. Post, L. Vinet and A. Zhedanov, Supersymmetric quantum mechanics with reflections, J. Phys. A 44

(2011) 435301 (15pp).

[18] V.X. Genest, J.-M. Lemay, L. Vinet and A. Zhedanov, The Hahn superalgebra and supersymmetric Dunkl

oscillator models, J. Phys. A 46 (2013) 505204 (11pp).

[19] S.-H. Dong, W.S. Chung, G. Junker and H. Hassanabadi, Supersymmetric Wigner–Dunkl quantum me-

chanics, Results in Physics 39 (2022) 105664 (6pp).

[20] M. R. Ubriaco, Thermodynamics of boson systems related to Dunkl differential–difference operators, Physica

A 414, 128 (2014).

9
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[24] B. Hamil, and B.C. Lütfüoğlu, Dunkl–Klein–Gordon Equation in Three-Dimensions: The Klein–Gordon

Oscillator and Coulomb Potential, Few-Body Systems 63, no. 4 (2022): 74.

[25] J. Gamboa, M. Plyushchay, and J. Zanelli, Three aspects of bosonized supersymmetry and linear differential

field equation with reflection, Nuclear Physics B 543, no. 1-2 (1999): 447-465.
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